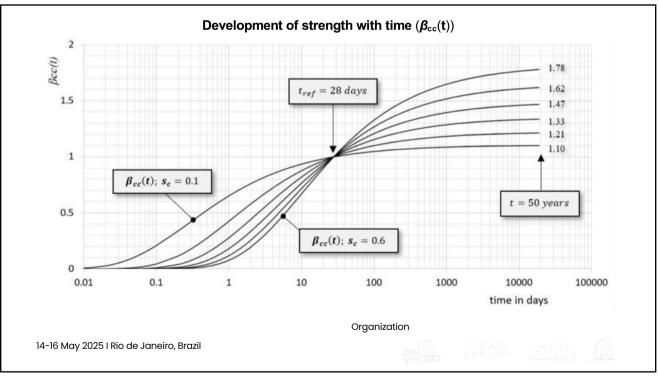
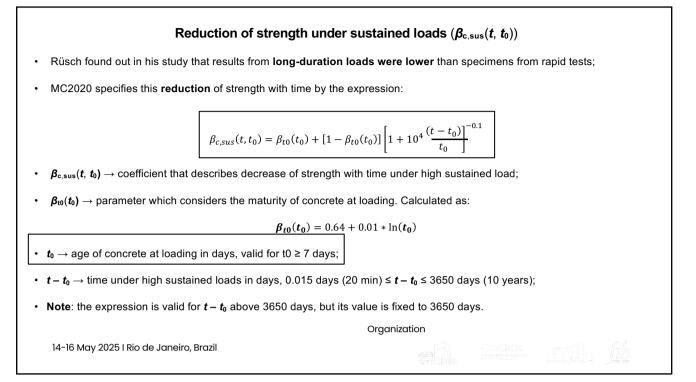
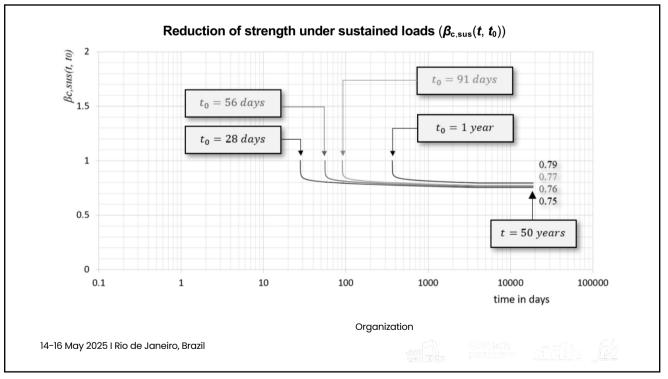
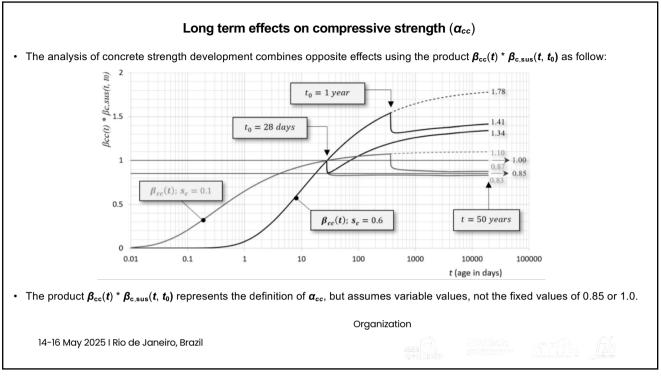


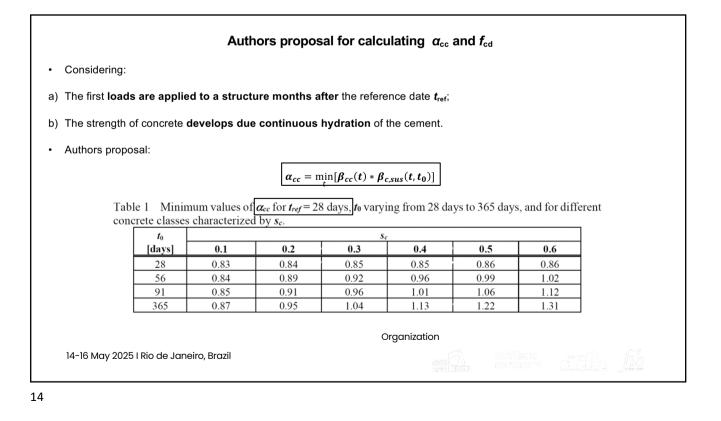
What motivated thi	s research ?
• fib Model Code 2020, to promote sustainability, allows different a	ages of control of concrete compressive strength (f_{ck}) ;
- To calculate f_{cd} , only two values of a_{cc} are possible (0.85 and 1.00) based on the control age of $f_{\sf ck};$
- On MC2020 are models that represent the development $(\pmb{eta}_{ ext{cc}}(\pmb{t}))$ are	nd reduction ($m{m{m{m{m{m{m{m{g}}}}}}}_{s,sus}(t, t_0)})$ of concrete compressive strength;
 What is the impact of the product β_{cc}(t) * β_{c,sus}(t, t₀), both which ar of concrete f_{cd} ? 	e functions on time <i>t</i> , on the design compressive strength
	Organization
14-16 May 2025 I Rio de Janeiro, Brazil	The second file of the second se

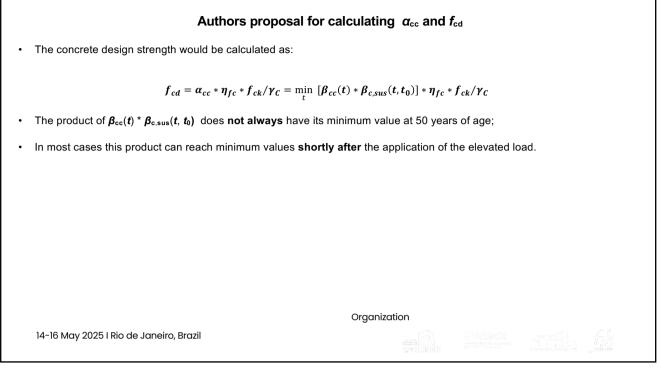


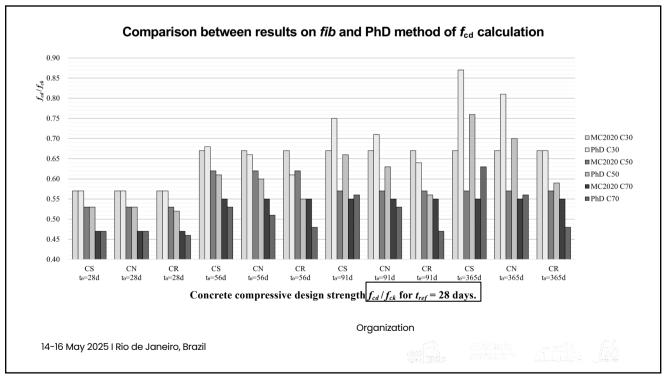

Influences between potential strength (f_{ck}) and actual in situ strength ($f_{c,ais}$)
• Actual in situ strength (<i>f</i> _{c,ais}) differs from the strength in the standard specimen (<i>f</i> _{ck}) due several reasons:
a) Real structure have very different procedures versus standard specimen test $\rightarrow \gamma_c$;
b) In structure $f_{c,ais}$ is needed for the service life versus one date for specimen standard $ ightarrow \gamma_c$;
c) Structure loaded versus unloaded testing specimen $\rightarrow a_{cc}$;
d) Specimen tested under controlled conditions in a rapid test (<5 minutes) $\rightarrow a_{cc}$;
✓ Concrete strength determined in the standard specimen (<i>f</i> _{ck}) represents the potential strength of concrete, what means, in real structure, for the same date, concrete strength is lower.
Organization
14-16 May 2025 I Rio de Janeiro, Brazil

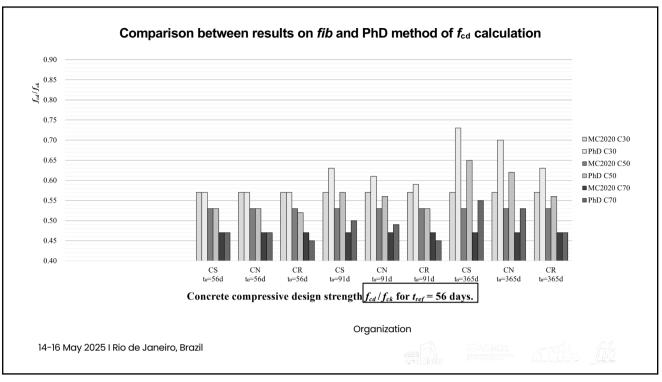

	Partial safe factor for concrete (y _c)
•	Cremonini found out that actual in situ strength ($f_{c,ais}$), from extracted cores, is 2 <u>0% to 30% lo</u> wer than standard specimen (f_{ck}) at 28 days of age;
•	γ_{c} value of 1.5, from MC2010 $\rightarrow \gamma_{m,c} * \gamma_{Rd1,c} * \gamma_{Rd1,c} = 1.39 * 1.05 * 1.05 \approx 1.5;$
•	To calculate f_{cd} , it is still necessary to consider the effects of sustained loads ($\beta_{c,sus}(t, t_0)$) and strength development over time ($\beta_{cc}(t)$);
•	The safety verification must take account the differences between actual in situ strength ($f_{c,ais}$) and standard specimen (f_{ck}).
	Organization
	14-16 May 2025 I Rio de Janeiro, Brazil

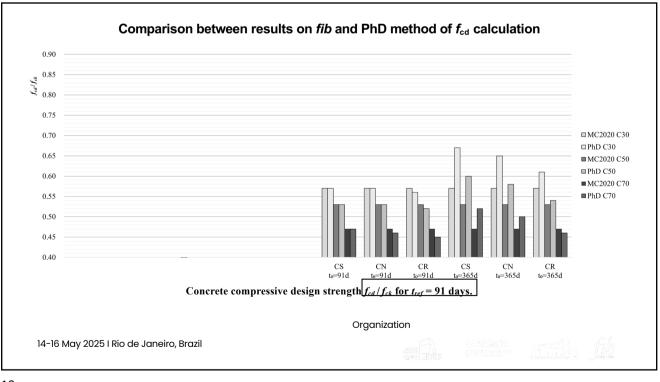

Development of strength w	ith time ($m{eta}_{cc}(t))$
Compressive strength of concrete develops over time from the chen	nical reactions of water with cement;
MC2020 specifies this development of strength with time by the expr	ession:
$\beta_{cc}(t) = \frac{f_{cm}(t)}{f_{cm}} = e^{\left\{s_c \left[1 - \left(\frac{t_{rej}}{t}\right)\right]\right\}}$	$\left(\frac{28}{t_{ref}}\right)^{0.5}$
• $oldsymbol{eta}_{ ext{cc}}(t) o ext{coefficient}$ that describes the ratio of strength development with	h time;
• $f_{cm}(t) \rightarrow$ mean compressive strength in an age t in days;	
+ $f_{cm} \rightarrow$ mean compressive strength at a specified reference age t_{ref} in d	ays;
• $t \rightarrow$ age of concrete in days;	
• $t_{\rm ref} \rightarrow$ age of concrete at which its strength determined in days;	
+ $s_c \rightarrow$ coefficient which depends on the strength development class of c	concrete, $0.1 \le \mathbf{s_c} \le 0.6$
Orga	anization
14-16 May 2025 I Rio de Janeiro, Brazil	Abels and file


		s_C		
		Class CR	Class CN	Class CS
$f_{ck} \leq 35$		0.3	0.5	0.6
35 < f _{ck} <	60	0.2	0.4	0.5
$f_{ck} \ge 60$		0.1	0.3	0.4
$f_{ck} \ge 60$ lass CR \rightarrow Rapid strength developed	ment class of concret	te;	0.3	0.4
s CN \rightarrow Normal strength develo	pment class of concre nent class of concrete	əte;		









Conclusions
 <i>fib</i> Model Code 2020, MC2020, specifies the value of <i>α</i>_{cc} either 0.85 or 1.00, empirical coefficients, however, they are both <i>fixed coefficients</i>;
• f_{cd} values of 0.47 * f_{ck} to 0.67 * f_{ck} were obtained using the values of a_{cc} prescribed in MC2020;
• The authors, proposes a novel methodology for determining the design compressive strength f _{cd} ;
• The methodology utilizes established models that account for the development ($\beta_{cc}(t)$) and reduction ($\beta_{c,sus}(t, t_0)$) of compressive strength of concrete;
 f_{cd} values of 0.45*f_{ck} to 0.87*f_{ck} were obtained using the proposed methodology;
 The proposed methodology offers a more accurate and potentially more economical and sustainable analysis, without compromising design safety.
Organization
14-16 May 2025 I Rio de Janeiro, Brazil

Г

Concrete Cement Short Column						Short Colum	Short Co		
Class	Class	t _{ref}	t _o	Model	α _{cc}	f _{cd} /f _{ck}	Dimensions	Total steel	Emission
020		50 dava		MC2020	0.85	0.57	500	130 kg	283 kg CO _{2eq.}
C30	CS	56 days	365 days	PhD			530mm x 530mm		
070	0.0	00 1	01.1	MC2020	1.00	0.55	- 380mm x 380mm	100 kg	302 kg CO _{2eq.}
C70	CR	28 days	91 days	PhD					

