IIIº SICEM 2010

O Concreto e a Sustentabilidade das Estruturas

Paulo Helene

O Concreto e a Sustentabilidade na Construção Civil

Como pode o setor de concreto contribuir para o movimento global de "sustentabilidade" na construção civil?

- European Concrete Platform ASBL. Sustainable Benefits of Concrete Structures. Feb. 2009

 The Concrete Centre. The Environmental, Social and Economic Sustainability Credentials of Concrete. Dec. 2009

 Comité Técnico de Meio Ambiente do IBRACON. 1996-2009. Presidente: Prof. Dr. Salomon Mony Levy

Paradoxo!

Como o consumo de cimento e de concreto que são utilizados como índices de desenvolvimento de uma nação, podem, ao mesmo tempo serem utilizados como índices de degradação do meio ambiente?

Uma das respostas está em pensar na estrutura, na obra, no produto final, e não nos materiais isoladamente

Protocolo de Kyoto

1997 → Protocolo de Kyoto

Em 2012 emitir 6% menos gases estufa que em 1990 → países desenvolvidos.

IPCC Reports 2007

According to IPCC May 4, report, the worst effects of global warming can be avoided if:

- GHG emissions to peak in 15 years, and fall to 50% of current levels by 2050.
- Limit temperature increase to 1.6°C
- Above actions will stabilize GHG emissions below 490 ppm, the current concentration being about $430\ \rm ppm$.

→UNEP → United Nations Environmental Programme →WMO → World Meteorological Organization

Qual o problema?

Aquecimento Global (Global Warming) no qual a indústria tem contribuição destacada ao lado do chamado "modo de viver" de vários dos cidadãos ingênuos que vivem nos países desenvolvidos.

Atualmente os países desenvolvidos emitem cerca de 66% do total de gases estufa do planeta e se considerado per capita essa contribuição nefasta pode chegar a 80%. "Weather Makers, by Tim Flannery. 2005"

Como reduzir o aquecimento global?

- 1. reduzir emissão de gases estufa
- 2. reduzir energia consumida
- 3. reduzir consumo de recursos naturais não renováveis
- 4. mudar o "modo de viver de alguns"

Direitos Reservados 200

 Como reduzir emissão de gases estufa, sem prejudicar desenvolvimento e qualidade de vida?

■ Sequestrar o CO₂ gerado nos processos industriais

ou

 Reduzir as emissões de GHG (gás estufa) nos processos industriais e no modo de viver de alguns

Direitos Reservados 200

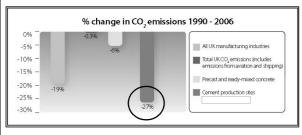
Fixação (sequestro) de CO₂

- Trata-se de procedimentos de captura das emissões de GHG e fixação destes gases na superfície da crosta terrestre ou enterrados no solo
- O próprio concreto e as argamassas de base cimento sequestram e fixam CO₂ através dos inevitáveis processos de carbonatação (CaO.CO₂)
- Ainda não há procedimentos viáveis para sequestro de CO₂ em larga escala nas indústrias

Direitos Reservados 2006

Como reduzir as emissões de GHG (gás estufa) nos processos industriais?

Atuando sobre a fabricação dos materiais constitutivos das estruturas de concreto:


- cimento
- agregado miúdo
- agregado graúdo
- água;
- aditivos;
- armadura / aço;
- fôrmas

Direitos Reservados 20

10

Sustentabilidade e concreto:

Situação no Reino Unido

The Concrete Centre

Direitos Reservados 2009

Sustentabilidade na Construção Civil

- 1. reduzir desperdício na construção civil
- aperfeiçoar processos de fabricação de cimento e aço
- 3. reduzir consumo de aço, madeira e cimento
- 4. aumentar uso de adições e aditivos
- ${\bf 5.} \quad {\bf aumentar} \ {\bf uso} \ {\bf de} \ {\bf agregados} \ {\bf reciclados}$
- 6. aumentar uso de concreto de elevada vida útil
- 7. aumentar uso de concreto de alta resistência

vireitos Reservados 2009

2009 12

Alternativas para tornar as Estruturas de Concreto ainda mais "verdes"

- 1. reduzir desperdício na construção civil
- 2. aperfeiçoar processos de fabricação de cimento e aço
- 3. reduzir consumo de madeira, aço e cimento
- 4. aumentar uso de adições e aditivos
- 5. aumentar uso de agregados reciclados
- 6. aumentar uso de concreto de elevada vida útil
- aumentar uso de concreto de alta resistência

Reduzir.Reaproveitar.Reciclar.Raciocinar

Direitos Reservados 2009

Carbonatação

e = 2.0 cm

 f_{ck} = 15 MPa $\rightarrow t$ = 8 anos

 $f_{ck} = 50 \text{ MPa} \implies t = 250 \text{ anos}$

 f_{ck} = 25 MPa \rightarrow t = 38 anos

Direitos Reservados 201

Sustainable Development

"Increasing service life of concrete structures we can preserve the natural resources.

If we develop the design and construction ability we can get concrete structures with 500 years service life. Doing this we can multiply by ten our productivity which means preserve the 90% of them"

Reducing the Environmental Impact of Concrete Concrete International. ACI, v.23, n. 10, Oct. 2001. p.61-66

Alternativas para tornar as Estruturas de Concreto ainda mais "verdes"

- reduzir desperdício na construção civil
- aperfeiçoar processos de fabricação de cimento e aço
- reduzir consumo de madeira, aço e cimento
- aumentar uso de adições e aditivos
- 5. aumentar uso de agregados reciclados
- 6. aumentar uso de concreto de elevada vida útil
- aumentar uso de concreto de alta resistência

Como tornar as estruturas de concreto ainda mais sustentáveis?

Empregando concreto de alta resistência HSC

As Estruturas de Concreto e a Sustentabilidade

•CO₂?

■Energia?

•Recursos naturais?

•Vida Útil?

(Life Cycle Analysis)

As Estruturas de Concreto e a Sustentabilidade

Pilar para 500t

 $f_{ck} = 20$ MPa

 f_{ck} = 50 MPa

Considerando um pilar central típico de um edifício de 20 andares secção quadrada, 3m de altura, armadura principal

Força normal característica = 500 tf				
f _{ck} (MPa)	taxa de armadura (%) → total do pilar	seção (cm)	adotado (cm)	
20	0.4 → 49kg	71.8 x 71.8	72 x 72	
50	0.4 → 24kg	46.9 x 46.9	50 x 50	
20	$4.0 \rightarrow 255 \mathrm{kg}$	51.2 x 51.2	52 x 52	
50	4.0 → 151kg	39.5 x 39.5	40 x 40	

As Estruturas de Concreto e a Sustentabilidade

f_{ck} = 20MPa

 $Cimento = 280 \ kg/m3$ $Areia = 845 \ kg/m3$ Brita = 1036 kg/m3 $\acute{A}gua = 210 \ kg/m3$

As Estruturas de Concreto e a Sustentabilidade

f_{ck} = 50MPa

 $Cimento = 420 \ kg/m3$ Areia = 801 kg/m3 Brita = 1010 kg/m3 $\acute{A}gua = 160 \ kg/m3$

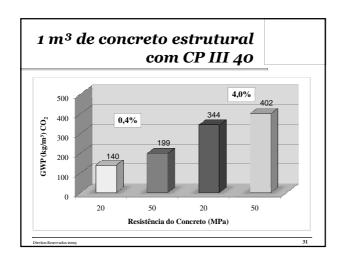
Emissões gasosas e energia consumida

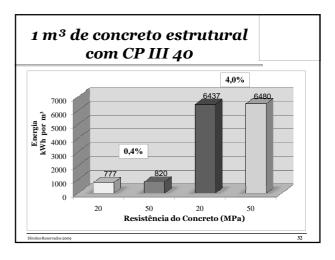
Material	NOx (kg/t)	CO ₂ (kg/t)	GWP (kg/t)	Energia consumida (kWh/t)
Clinquer Portland (≈ CP I)	1,85	855	1447 (880)	998
ferro gusa (minério) CA 50 & CA 60 (sucata)	4,43	1588 380	3006 719	5.060 20.000

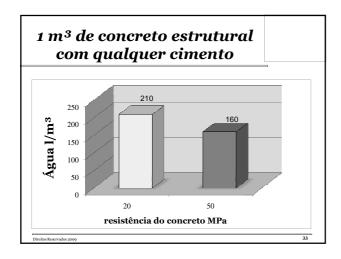
"Global warming potential (GWP) is a measure of how much a given mass of greenhouse gas is estimated to contribute to global warming. It is a relative scale which compares the gas in question to that of the same mass of <u>carbon dioxide</u>.

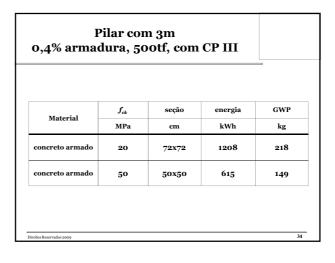
Concreto estrutural fck 20MPa

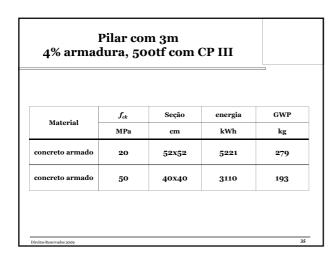
	Para 1 m³	GWP kg/t	GWP kg/m ³	Energia kWh/m³
Cimento CP I	280kg	1447	405	280
Areia	845kg	0	0	1
Pedra	1036kg	0	0	12
Água	210kg	0	0	0
Aço	32kg	719	23	640
	315kg		226	6300
Formas 12 m²/m³ 6 reutilizações chapa de1,4cm	0,0280 m²	o	o	43
TOTAL			428	933
IOIAL			631	6636

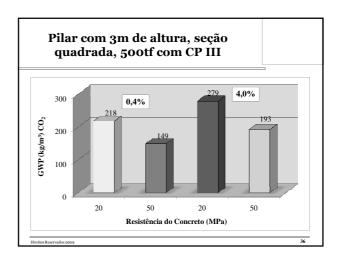

Concreto estrutural fck 50MPa

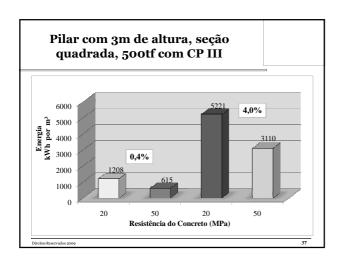

	Para 1 m³	GWP kg/t	GWP kg/m ³	Energia kWh/m³
Cimento CP I	420kg	1447	607	419
Areia	801kg	0	0	3
Pedra	1010kg	0	0	12
Água	160kg	0	0	0
4	32kg		23	640
Aço	315kg	719	226	6300
Formas 12 m ² /m ³ 6 reutilizações chapa de1,4cm	0,0280 m²	o	o	43
TOTAL			630	1117
IOIAL			833	6777

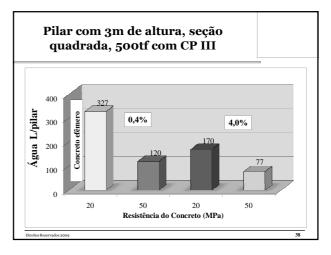

1 m³ de Concreto estrutural

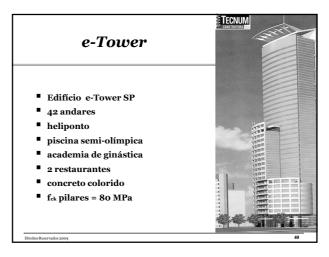

Material	Tipo	f _{ck} MPa	GWP kg/m³	Energia kWh/m³
concreto armado	CP I	20	428 / 631	933 / 6636
concreto armado	CP III	20	140 / 344	777 / 6437
concreto armado	CP I	50	630 / 833	1117 / 6777
concreto armado	CP III	50	199 / 402	820 / 6480

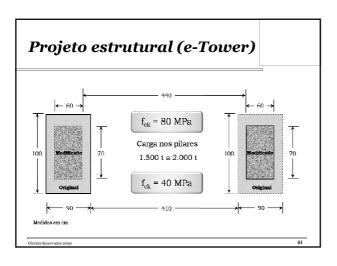

0,4% & 4% de taxa de armadura

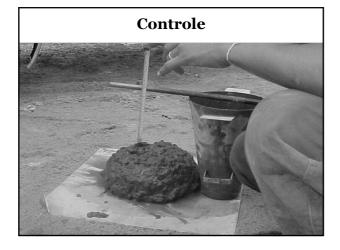












Economia de Recursos Naturais

Original: $f_{ck} = 40 \text{MPa}$ seção transversal \rightarrow 90cm x 100cm

0,90m²

HPC / HSC: $f_{ck} = 80$ MPa seção transversal → 60cm x 70cm

0,42m²

Direitos Reservados 200

Sustentabilidade

- > 70% menos areia
- > 70% menos pedra
- > 53% menos concreto
- > 53% menos água
- > 20% menos cimento
- > 31% menos área de fôrma

Direitos Reservados 200

46

Sustentabilidade

- > 25% mais de reaproveitamento de fôrma
- > 43% menos aço
- > 16 vagas a mais
- > 1000% vida útil maior
- > 100% desforma mais rápida

Direitos Reservados 2000

Pontos para Discussão

- 1. Índice de "sustentabilidade" do concreto?
 - → GHG/GW; kWh; Água; por kg → furado! demonstrado.
 - $\boldsymbol{\rightarrow}$ GHG/GW; kWh; Água; por m³ $\boldsymbol{\rightarrow}$ furado! demonstrado.
 - \rightarrow GHG/GWP; kWh; Água: por (m³.MPa) ou por (Mg.MPa)

índice	20 MPa	50 MPa
GHGGWP / m ³ ·MPa ou Mg.MPa	24 / 10	12 / 5
kWh / m³·MPa ou Mg.MPa	360 / 153	146 / 61
Água / m³·MPa ou Mg.MPa	10 / 4,3	3 / 1,3

ritos Reservados 2009

8

Pontos para Discussão

- 1. Índice de "sustentabilidade" do concreto?
 - → GHG/GW; kWh; Água; por kg → furado! demonstrado.
 - \rightarrow GHG/GW; kWh; Água; por m³ \rightarrow furado! demonstrado.
 - → GHG/GWP; kWh; Água: por (m³.MPa) ou por (Mg.MPa)

índice	20 MPa	50 MPa
GHGGWP / m3·MPa ou Mg.MPa	24 / 10	12/5
kWh / m³·MPa ou Mg.MPa	360 / 153	58% 146/61
Água / m³·MPa ou Mg.MPa	10 / 4,3	3 / 1,3

Pontos para Discussão

2. Índice de "sustentabilidade" da estrutura de concreto?
→ GHG/GW; kWh; Água; por pilar de 500tf

índice	20 MPa	50 MPa
GHGGWP / pilar 500tf (0,4%)	218	149
GHGGWP / pilar 500tf (4,0%)	279	193 30%
kWh/ pilar 500tf (0,4%)	1208	615
kWh/ pilar 500tf (4,0%)	5221	3110 457
água / pilar 500tf (0,4%)	327	120
água/ pilar 500tf (4,0%)	170	77 55%

itas Reservados 2000

Pontos para Discussão

- 1. Adotar algo do tipo CO2/Mpa → furado
- Fixar um concreto de referência?
 20MPa; CP I; Slump 100mm; brita 2; sem aditivo
- 3. Fixar uma estrutura de referência: pilar, uma viga, uma laje?
- 4. Fazer a análise completa com formas, aço, espaços, reaproveitamentos, etc.?

s Reservados 2009

Resumindo

- A Engenharia de Concreto tem caminhado na direção certa?
- 2. A Engenharia de Concreto tem conhecimento de sua importância?
- 3. Como pode atuar para focar ainda mais?
- 4. È uma grande oportunidade de pesquisa na área de Engenharia de Materiais no Brasil?

os Reservados 2009 52

√Qualidade de vida

- ✓ Economia de recursos
- ✓ Segurança / Robustez
- $\checkmark Compromisso\ Ambiental$

Direitos Reservados 2000

✓Adições

✓Aditivos

✓Coprocessamento

√HSC / HPC

✓ Durabilidade

Direitos Reservados 2009

Resumindo

- A Engenharia de Concreto tem caminhado na direção certa?
- 2. A Engenharia de Concreto tem conhecimento de sua importância?
- 3. Como pode atuar para focar ainda mais?
- 4. È uma grande oportunidade de pesquisa na área de Engenharia de Materiais no Brasil?

Direitos Reservados 200

Água

Concreto
Alimentos

per capita

volume → importância social

Direitos Reservados 200

Resumindo

- A Engenharia de Concreto tem caminhado na direção certa?
- 2. A Engenharia de Concreto tem conhecimento de sua importância?
- 3. Como pode atuar para focar ainda mais?
- 4. È uma grande oportunidade de pesquisa na área de Engenharia de Materiais no Brasil?

Direitos Reservados 200

57

>sequestro de CO₂

>economia energia >processo ?

>aumentar a ecoeficiência no uso

Direitos Reservados 200

Resumindo

- A Engenharia de Concreto tem caminhado na direção certa?
- 2. A Engenharia de Concreto tem conhecimento de sua importância?
- 3. Como pode atuar para focar ainda mais?
- 4. È uma grande oportunidade de pesquisa na área de Engenharia de Materiais no Brasil?

Direitos Reservados 2000

59

- ✓ Referência mundial → cimento + ecoeficiente
 - √ É o setor mais competitivo do Brasil
- ✓ Tem os melhores centros de pesquisa da AL
 - ✓ Tem recursos para pesquisa
 - ✓ Paga bem os pesquisadores
- ✓ Falta política adequada de incentivo à pesquisa (genoma, polímeros, ceramica fina)

tireitos Reservados 200

