Raymundo Rivera

International Symposium on Durability of Concrete

Durability Criteria Concepts in the Design of Concrete Structures

Paulo Helene

University of São Paulo Brazilian Concrete Institute IBRACON REHABILITAR International Network CYTED

When Architects and Engineers was recognized by first time in history?

Reinforced Concrete = Eternity!!

Concrete Structures Durability

- 1. Aging
- 2. Service Life
- 3. Aggressiveness
- 4. Concrete Resistance
- 5. Prediction Models
- 6. Design Criteria
- 7. Materials Selection
- 8. Construction Procedures
- 9. Maintenance Procedures

Concrete Structures Durability

- 1. Aging
- 2. Service Life
- 3. Aggressiveness
- 4. Concrete Resistance
- 5. Prediction Models
- 6. Design Criteria
- 7. Materials Selection
- 8. Construction Procedures
- 9. Maintenance Procedures

Service life ACI 365.1R Chapter 1

Service life is the period of time after concrete placement during which all the properties exceed the minimum acceptable values when routinely maintained.

Three types of service life have been defined;

- **1. Technical service life** is the time in service until a defined unacceptable state is reached, such as spalling of concrete;
- 2. Functional service life is the time in service until the structure needs change in functional requirements;
- 3. Economic service life is the time in service until replacement of the structure (or part of it) is economically more advantageous than keeping it in service.

Durability of Buildings and Building Elements, Products and Components			
Service Life	Structures		
< 10 years	Exposition		
> 10 years	Replaceable		
>30 years	Industrial Buildings		
> 60 years	Buildings		
>120 years	Public Buildings		

Brazilian Standard

Aggressiveness approach

macro-clima		internal	external	
	dry	wet	dry	wet
rural	Ι	Ι	I	II
urban	Ι	II	I	II
sea shore	II	III	-	III
industry	II	III	II	III
specific	II	III ou IV	III	III ou I
splash zone	-	-	-	IV
underwater $\geq 3r$	n -	-	-	Ι
earth	-	-	I	II, III, I ^v

31

Concrete Structures Durability

- 1. Aging
- 2. Service Life
- 3. Aggressiveness
- 4. Concrete Resistance

5. Prediction Models

- 6. Design Criteria
- 7. Materials Selection
- 8. Construction Procedures
- 9. Maintenance Procedures

- Empiric or indirect
- Accelerated Tests
- Deterministic Approach
 - (Transport Mechanism)
- Stochastic Approach

Service Life Prediction Models

- Empiric or indirect
- Accelerated Tests
- Deterministic Approach
 - (Transport Mechanism)
- Stochastic Approach

First Standards for Concrete Structures			
1903	Switzerland		
1903	Germany		
1906	France		
1907	England		

Durability Requirements ➢ Concrete Cover ➢ Concrete Composition

ACI 318	design criteria concrete cover sections 7.7.1, 7.7.5			
	Environmental conditions			
Member	Not exposed to earth or weather	Exposed to earth or weather	Severe environments	
	Nominal concrete cover (mm)			
Slabs	20	40	50	
Beams Columns	40	50	60	

ACI 318 Table 4.2.2 Requirements for	de Special Exp	esign cri cone osure Conditions	teria crete
Exposure Condition	Maximum w/c	Minimum f' _c (MPa)	
Concrete intended to have low permeability when exposed to water	0,50	28	
freezing and thawing or deicing chemicals	0.45	31	
corrosion protection of reinforcement – deicing chemicals, salt, salt water, brackish water, seawater or spray from these sources	0.50	35	

Service Life Prediction Models

- Empiric or indirect
- > Accelerated Tests
- Deterministic Approach

(Transport Mechanism)

Stochastic Approach

ASTM E 632, USA 1988

Standard Practice for Developing Accelerated Tests to Aid Prediction of the Service Life of Building Components and Materials

41

Service Life Prediction Models

- Empiric or indirect
- Accelerated Tests
- Deterministic Approach

(Transport Mechanism)

Stochastic Approach

Carbonation
$$f_{ck}$$
= 25 MPa
 $e = 1,0 \text{ cm} \rightarrow t = 10 \text{ years}$
 $e = 2,5 \text{ cm} \rightarrow t = 60 \text{ years}$
 $e = 4,0 \text{ cm} \rightarrow t = 160 \text{ years}$

Chlorides - diffusion

$$e = 2,0 cm$$

 $f_{ck} = 15 MPa \rightarrow t = 4 years$
 $f_{ck} = 50 MPa \rightarrow t = 150 years$
 $f_{ck} = 25 MPa \rightarrow t = 23 years$

Sustanaible Development

"Increasing service life of concrete structures we can preserve the natural resources.

If we develop the design and construction ability we can get concrete structures with **500 years** service life. Doing this we can multiply by ten our productivity which means preserve the 90% of them"

Kumar Mehta

Reducing the Environmental Impact of Concrete *Concrete International*. ACI, v.23, n. 10, Oct. 2001. p.61-66

