

Universidad Tecnológica Nacional Facultad Regional Mendoza

Curso de Postgrado: PATOLOGIA Y TERAPIA DE LAS ESTRUCTURAS DE HORMIGÓN

PROF. DISERTANTE: DR. PAULO DO LAGO HELENE

1

EVALUACIÓN DE LA EFICIENCIA DE PUENTES DE ADHERENCIA CON RESINAS EPOXI

ELABORARON:

ING. NERY PIZARRO
ING. MIGUEL E. TORNELLO

OBJETIVOS DEL TRABAJO:

- Comprobar mediante ensayos la eficiencia de puentes de adherencia para unir hormigones de distintas edades, realizados con resinas epoxi.
- Comprobar las características, enunciadas por el fabricante, del producto utilizado.
- Comprobar si existe diferencia entre aplicar el puente de adherencia en superficies secas o húmedas.

3

PARA REPARAR ESTRUCTURAS DAÑADAS, EN MUCHOS CASOS SE HACE NECESARIO REALIZAR PUENTES DE ADHERENCIA:

- Materiales a base de Cemento.
- Materiales con aglomerantes orgánicos a base de polímeros termoestables (resinas epoxi, resinas poliester, poliuretano, etc)
- Materiales con Aglomerantes mixtos, formados por cementos portland y polímeros termoplásticos.

/

METODOLOGÍA DEL ENSAYO

- Ensayos a compresión sobre probeta cilíndrica de Ø 150mm y altura 300 mm.
- Corte en junta diagonal en la probeta (sland shear test), con ángulo de 60°.
- Se ensayaron dos probetas, una con sup. seca y otra con sup. húmeda, despúes de haber estado sumergida 48 horas en agua.

5

EL ESTADO DE TENSIONES EN LA INTERFACE, COMBINA TENSIONES NORMALES Y TANGENCIALES, DICHA METODOLOGÍA DE ENSAYO PRESENTA LAS SIGUIENTES VENTAJAS:

- El estado de tensión es representativo de situaciones reales de reparación.
- El método es sensible a la resistencia que presenta la junta a la adherencia.
- Ensayo simple de realizar.
- Facilidad de simular situaciones reales de reparación.

PREPARACIÓN DE LAS SUPERIFICIES DE LAS JUNTAS:

- Limpieza de la Superficie con cepillo de acero.
- Extracción del polvo suelto en la superficie.
- Aplicación de la resina epoxi.

7

APLICACIÓN DE LA RESINA EPOXI:

 En ambas superficies (seca y húmeda), la resina fue aplicada con espátula (puede ser también a pincel) adecuadamente exparcida sobre la superficie y cubriendo la totalidad de la misma.

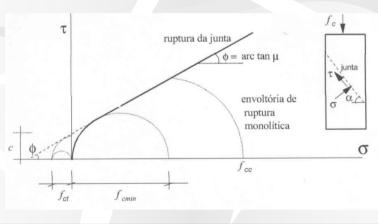
CARACTERISTICAS Y USOS DE LA RESINA EPOXI UTILIZADA (SIKADUR 32 GEL):

- Base de resinas epoxídicas modificadas sin solventes de 2 componentes.
- Adhiere hormigones y morteros endurecidos con otros frescos.
- Adhiere distintos materiales (hierro, madera, etc) al hormigón o mortero.

a

TENSIONES EN LA JUNTA:

- Si la adherencia en la junta es eficiente, las tensiones a lo largo de la misma son transmitidas por una combinación entre cohesión y fricción.
- Si la adherencia es eficiente, la rotura puede ocurrir de dos maneras:
 - Rotura Monolítica.
 - Rotura Diagonal próxima a la junta.


- Cuando la adherencia es satisfactoria, el estado de tensión en la junta resulta ser una distribución irregular de tensiones de corte, tracción y compresión. Es un estado de tensión complejo y altamente influenciado por el espesor del adhesivo.
- La resistencia última, puede estimarse utilizando el criterio de Coulomb:

$$t = c + m s$$

$$fc = c (1 + tag a) / tag a - m$$

11

- Estas expresiones pueden ser representadas gráficamente. La recta inclinada separa dos formas de falla :
 - Rotura en Coincidencia con la Junta
 - Rotura Monolítica.

 Las Tensiones últimas de corte y normal en la interfase, pueden ser expresadas en término de la resistencia a compresión de la probeta (fc) y de la inclinación (a)de la junta diagonal:

> s = fc cos² a t = fc sen a cosa

13

FASE EXPERIMENTAL:

 Se ensayaron 2 probetas compuestas con hormigón antiguo y nuevo.

EVALUACIÓN DE LA EFFICIENCIA DE AONE RESPUES CON RESINAS EPOSI PA NAS PARRO NA MENOR DE ANTIGORIA DE ANTIGORI

Se ensayaron 3
 probetas con hormigón de referencia.

Características de las Mezclas Utilizadas:

MEZCLA	IDENTIF.	PROP. AGREG.	a/c	ASENTAM.	CONSUMO	fc (28 días)
(c:a:p)		(1:m)		(mm)	CEMENTO	Мра
1:3,32:3,68	M2	1:07	0,73	100+/-20	269 Kg	21,5

Resultados de los Ensayos a Compresión sobre Probetas cilíndricas:

PROBETA	CARACTERISTICA	PESO PROBETA	CARGA AXIAL DE ROTURA		
		(kg)	(t)		
1	Con Junta Seca	12,40	31,0		
2	Con Junta Húmeda	12,40	24,0		
3	Referencia Hormigón nuevo	12,20	39,0		
4	Referencia (1) Hormigón Antiguo	12,60	56,5		
5	Referencia (2) Hormigón Antiguo	12,60	54,5		

15

- Las fallas de las probetas con hormigón compuesto, en ambos casos se produjeron en coincidencia con la junta.
- La falla de las probetas elaboradas con hormigón de referencia se produjeron por un agotamiento de su capacidad a compresión.

ANÁLISIS DE LOS RESULTADOS:

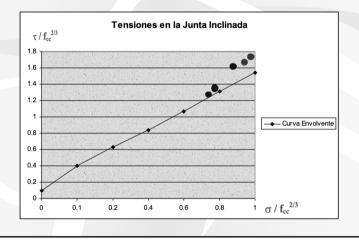
- Según KRIEHG: Si las probetas compuestas arrojan valores de resistencia (fc/fcc) por encima del 90%, la adherencia puede considerarse satisfactoria, y su comportamiento se caracteriza por un hormigón monolítico.
- Utilizando el criterio de Coulomb modificado. Se calculan las tensiones normales y tangenciales en la interface de la junta inclinada, y se analiza la posición relativa de los puntos de coordenadas (st), en relación a rectas de envolventes.

17

1) Análisis utilizando el Criterio de KRIEHG:

 Se obtuvieron, de los ensayos, la resistencia a compresión de las probetas compuestas (fc) y las del hormigón de referencia (fcc):

PROBETA	CARACTERISTICA	CARGA ROTURA	fc	fcc	fc/fcc	fc/fcc
			Мра	Мра	(Prob.1)	(Prob.2)
1	Con Junta Seca	31	17,54			
2	Con Junta Húmeda	24	13,58			
3	Referencia Hormigón nuevo	39		22,07	0,795	0,615
4	Referencia (1) Hormigón Antiguo	56,5		31,97	0,548	0,425
5	Referencia (2) Hormigón Antiguo	54,5		30,84	0,569	0,440


2) <u>Utilizando el Criterio de Coulomb</u> modificado:

 La unión será considerada eficiente si los puntos cuyas coordenadas dadas por las tensiones últimas normales y tangenciales si sitúan por encima de la recta envolvente propuesta por Clímaco:

PROB.	CARACTERISTICA	N rot.	fc	fcc	s	t	s /fcc 2/3	t /fcc 2/3	s /fcc ^{2/3}	t /fcc ^{2/3}
		(t)	Мра	Мра	Мра	Мра	(Prob.1)	(Prob.1)	(Prob.2)	(Prob.2)
1	Junta Seca	31	17,54		4,38	7,59				
2	Junta Húmeda	24	13,58		3,39	5,88				
3	Ref. H° Nuevo	39		22,07			1,20	2,08	0,93	1,60
4	Ref. (1) H° Ant.	56,5		31,97			0,94	1,62	0,73	1,25
5	Ref. (2) H° Ant.	54,5		30,84			0,96	1,66	0,74	1,29

19

 Recta envolvente propuesta por Clímaco, con las tensiones en la junta inclinada (s-t), relativas a la resistencia del hormigón (fcc^{2/3}), para junta seca y húmeda. (Junta Seca - Junta Húmeda)

CONCLUSIONES:

- Las probetas ensayadas con puentes de adherencia, arrojaron valores reducidos de resistencias relativas medias de compresión y corte. Se obtuvieron valores máximos de (fc/fcc= 0.80) para junta seca y valores mínimos de (fc/fcc= 0.45) para junta húmeda.
- La eficiencia del puente de adherencia fue mayor en el caso en que las resina epoxi fue aplicada sobre una superficie seca, que en una superficie húmeda.

- Utilizando el criterio de Coulomb modificado, la eficiencia de las juntas fueron satisfactorios, aspecto que no pudo demostrarse con el criterio de Kriehg.
- Las dos probetas ensayadas con hormigón compuesto, soportaron una menor carga axial de rotura que las probetas elaboradas con hormigón de referencia, tanto del antiguo como del nuevo hormigón.
- La falla se produjo justo por la junta y no debido a una rotura del hormigón (rotura monolítica), lo que indica que la adherencia ha sido insuficiente.

- No fue posible verificar las afirmaciones del fabricante en los siguientes aspectos:
 - En cuanto a que el producto utilizado actúa sobre superficies secas o húmedas, desarrollando su resistencia en forma paralela a la del hormigón nuevo, debido a que precisamente la falla se produjo en coincidencia con la junta.
 - En cuanto a que el producto utilizado permite uniones monolíticas en general, dado a que la rotura no se produjo en el hormigón, sino por la junta.

- Dada la diferencia de los resultados, utilizando los dos criterios de verificación, es necesario realizar un mayor número de ensayos.
- Los ensayos fueron realizados, en los dos casos analizados, limpiando las superficies con cepillos de acero. Sería conveniente realizar nuevos ensayos, con superficie piqueteada y con agregado grueso expuesto.

El Grupo de trabajo agradece vuestra atención!!!!!!!! Y esperamos haya sido de vuestro interés:

FIN

